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ABSTRACT 
Cerium oxide- titanium oxide hybrid nanocomposite (CeO2-TiO2NC) was prepared by co-precipitation process for the 
photocatalytic decay of the antibiotics. X-ray diffraction study shows a cubic structure with the crystallite size of 19 nm of 
CeO2-TiO2NC. UV-vis spectroscopy showed two distinct peaks (275 nm and 300 nm) corresponding to CeO2 and TiO2, with 
a band gap of 3.3 eV. Scanning electron microscope having Energy dispersive X-ray was applied to find out the morphology 
and chemical or elemental analysis of CeO2-TiO2NC that confirmed the composite formation. Raman study shows the most 
dominant characteristic vibrational modes of the CeO2-TiO2NCs at lower frequency range. The degradation of 
Ciprofloxacin (CIP) and Levofloxacin (LEVO) was investigated under dark, visible, and UV light irradiation under an 
ambient environment at neutral pH. The highest degradation of LEVO and CIP was obtained as 97.89 % and, 91.78%, 
respectively under UV- light irradiation with 120 minutes.  
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INTRODUCTION 
Antibiotics are one of the top accomplishments in microbiology. They are strong therapeutic drugs for 
bacterial diseases (1). Recently, people have been excessively using these antibiotics which cannot be 
completely metabolized inside their bodies and excreted out. These antibiotics are present in wastewater 
and make their way to groundwater, rivers and other water sources. Even though they have a short shelf-
life, this causes serious harm to humans and the ecosystem (2). They damage the ecosystem by exposing 
microbial community in water sources, promotes generation of antibiotic-resistant genes and bacteria, and 
acute to chronic toxicity for humans and other organisms (3–5). 
Ciprofloxacin (CIP) and Levofloxacin (LEVO) are synthetic second-generation fluoroquinolones class 
antibiotic drugs. Several side effects may occur from fluoroquinolones depending on different personal or 
overdose which may even lead to death. CIP is used for bacterial infections such as anthrax and certain 
types of plague. Side effects include allergic reaction, nerve damage, tendon issues, aorta damage, low blood 
sugar, and jaundice. It also hinders the synthesis of protein and DNA by causing interference with the 
enzymes that helps DNA rewinding, killing the bacteria (6). CIP concentration in water sources even as low 
as 0.2% (v/v) has been reported to significant growth rate reduction for tadpoles (7). LEVO is used for 
bacterial infections such as chronic bronchitis, pneumonia and infections of kidney, sinus, urinary tract, 
eyes, skin, and prostate. Side effects include allergic reactions, liver damage, seizures, intestine infection, 
nerve damage, heart rhythm fluctuations, sugar level fluctuations, and photosensitivity. In environment, 
significant growth rate reduction in different green algae (Chlorella vulgaris and Microcystis flos-aquae) 
have been reported in the presence of LEVO (8,9). 
Therefore, this is of utmost importance to treat wastewater before expelling it to the environment. Many 
different methods have been deployed for effective wastewater treatment for antibiotic removal or 
degradation, such as biological treatment, reverse osmosis, photocatalytic degradation, sorption 
techniques, membrane filtration, ion exchange, and electrocoagulation (10–19). Due to their chemical 
stability and non-biodegradable nature, conventional methods could not achieve optimum removal 
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efficiency. Whereas, photocatalytic reaction can degrade these contaminations completely into carbon 
dioxide, water, and mineral acids (11,20,21)using nanomaterials. 
Titanium dioxide (TiO2) has been utilized for photocatalytic degradation of several organic and inorganic 
contaminants in water. It has good stability, economical, excellent light adsorption, low toxicity, and easy 
recovery by filtration and centrifugation methods (22,23). However, it has a large band gap which restricts 
its adsorption to UV range only. This drawback has been taken care of using doping or forming composites 
with different nanoparticles (24–26). Rare earth metals and their oxides which combined with TiO2, leads 
to red shift by forming inter-band states (15,27). Also, their addition reduces electron-hole pair 
recombination by trapping them in inter-bands and accelerating their mobility over TiO2 surface (28,29). 
Cerium (Ce) has shown activity in the visible light region when combined with TiO2 (30–32). Cerium oxide 
(CeO2) is an active rare earth metal oxide, it shows excellent stability, easily accessible due to excess 
quantity, non-toxicity, and economical nature (33,34). It has been used in many different applications such 
as, pollution control, oxygen sensors, solid oxide fuel cells, hydrogen generation and wastewater treatment 
(16,23,35). It is reported that the nanocomposite of CeO2-TiO2NC exhibits the synergistic effect, resulting 
in an increasing photocatalytic activity by strengthening the optical absorption property. CeO2-TiO2NC for 
methyl red (36) and CeO2–TiO2–graphene (37) nanocomposites used for the photocatalytic degradation of 
pollutants and reported improved results. Besides this, CeO2-TiO2NC used this for degradation of bis-p-
nitrophenyl phosphate and chemical warfare agents (38) and authors claimed the improved the 
degradation capability due to the synergetic effects of CeO2-TiO2. Thus, there is wide scope to explore the 
photocatalytic degradation of antibiotics using CeO2-TiO2NC. Table 1 shows the comparison of degradation 
of antibiotics using different nanomaterials. 
In this context, CeO2-TiO2NC was synthesized using the co-precipitation method for degradation of CIP and 
LEVO.  The chemical composition, crystal structure, and crystallinity of the CeO2-TiO2NC were ascertained 
by means of an X-ray diffraction spectroscopy (XRD) technique. The structural morphology of CeO2-TiO2NC 
was confirmed using Scanning Electron Microscopy (SEM). The chemical composition of the as-prepared 
CeO2-TiO2NC was monitored by energy dispersive X-ray analysis (EDX).  
 

Table1. Comparison of antibiotics degradation using nanomaterials. 
S. 
No. Nanoparticles Synthesis 

Techniques 
K value 
(min-1) 

Degradation  
time (min) 

Efficiency  
% Reference 

1 CoTiO3/CeO2 
heterostructures Sol-gel process 0.0417 90 100 (CIP) (39) 

2 Ag2CO3/CeO2/AgBr hydrobromic 
acid corrosion - 40 88 (LEVO) (40) 

3 Cerium oxide/MXT 
composite.  

hybrid 
methodology 0.5 103 94.7 

(Tetracycline)  (41) 

4 CeO2/Co3O4 facile chemical 
reaction  50 90 (CIP) (42) 

5 AgCl/ZIF-8/C–TiO2 Hydrothermal 0.043 60 97.3 (CIP) (43) 

6 CeO2-TiO2NC Co-
precipitation 

0.017 
0.54 120 97.89 (LEVO) 

91.78 (CIP) 
This work 
 

 
MATERIAL AND METHODS 
Chemicals used 
Titanium isopropoxide (TIP) (97%, Aldrich Chemicals), isopropanol (99%, Rankem), cerium nitrate 
hexahydrate (99%, Thomas Baker), and sodium hydroxide (98%, Fisher Scientific). Levofloxacin (LEVO) 
and Ciprofloxacin (CIP) were purchased from Sigma Aldrich of 99% purity.  
2.2 Synthesis of the CeO2-TiO2NC 
The pre-calculated amount, i.e., 5 mL TIP and 10 mL isopropanol, of precursor was mixed with DI water. 
The gel preparation process was started following the mixing of the solutions by vigorous stirring. 
Hydrolysis of TIP yielded a turbid solution that was heated at 70°C for approximately 18–20 h. The 
precipitated sample was then collected and washed thrice with ethanol to neutralize the sample. This 
precipitate was collected and dried for 24 h at 80°C. Finally, the prepared powder was annealed at 400°C 
for 3 h. To synthesize CeO2 nanoparticles (NPs), Ce(NO3)2·6H2O was added to 100 mL DI water to prepare 
a 0.25 M solution. This solution was mixed under regular stirring with the as-prepared TiO2 NPs by using 
the titration method. Following the complete mixing of CeO2 and TiO2 NPs, the solution was stirred for some 
time and then dried at 80°C for 5 h. The resultant CeO2-TiO2nc was calcined at 500°C for 4 h. 
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Characterization 
X-ray diffraction pattern was measured from Rigaku Miniflex, Japan. Scanning electron microscopy (SEM) 
and Energy dispersive x-ray (EDX) analysis was carried out to determine the chemical composition of the 
as-prepared NC material using JSM-IT200 JEOL, JAPAN. UV/Vis spectrophotometer was applied to examine 
the optical absorption and photocatalytic activities using T90 + UV/VIS Spectrometer. Raman shift was 
carried out in the range of 500-2000 cm-1 using EnSpectr R532, laser of WITEC system.  
Photo-catalysis study 
Solutions of LEVO and CIP (10 ppm concentration) in 30 mL of DI water were prepared for degradation 
studies. Next, 30 mg of CeO2-TiO2nc was added to 30 mL of the LEVO and CIP solutions separately in two 
beakers. The photocatalytic study of LEVO and CIP compounds were performed under three irradiation 
conditions: without light, visible light (λ > 400 nm) generated through a 100 W power bulb (Philips), and 
UV light (λ < 400 nm) generated through a 300 W power bulb (Osram). The beaker was positioned 15 cm 
from the two bulbs. Next, 4 mL of sample was collected at regular intervals of 0, 20, 40, 60, 80, 100 and 120 
min in micro centrifuge tubes. The tubes were then centrifuged (Eppendorf Centrifuge 5424R) to obtain a 
supernatant. UV-Vis spectra were acquired with a UV-Vis spectrometer to study the sequential degradation 
of LEVO and CIP compounds. The reutilization of the catalyst was investigated by the cyclic photocatalytic 
study. The used catalyst was centrifuged after the first degradation study to remove the adsorbed 
molecules. The catalyst was then washed 4–5 times using DI water. Centrifugation was performed one more 
time to remove the remaining adsorbed molecules. CeO2-TiO2nc was further studied for 4 degradation 
cycles of LEVO and CIP. 
 
RESULTS AND DISCUSSION 
Crystallographic study 
Figure 1 shows the XRD spectra of CeO2/TiO2nc in the range of 10–80°. TiO2 peaks are indicated by the (*) 
mark and are positioned at 28.32°, 35.95°, and 67.42° corresponding to (101), (004), and (204) planes, 
respectively. The remaining peaks in the spectra of CeO2/TiO2nc are corresponding to CeO2 at the positions 
of 31.17°, 32.95°, 47.2°, 56.13°, 59.7°, and 62.45° corresponding to (111), (200), (220), (311), (222), and 
(400), respectively (44). The average crystallite size was calculated using the Debye–Scherer equation as 
explained in our previously published paper (44). The average crystallite size as 19 nm for CeO2-TiO2nc 
was obtained. The existence of cubic CeO2 and anatase TiO2 phases were confirmed by XRD. 
 

 
Fig. 1: XRD analysis of the CeO2-TiO2nc. 

Morphological characterization  
Figure 2 shows the SEM images with EDX to verify the morphological study and element distribution of 
CeO2-TiO2nc. EDX analysis was used to determine the chemical composition and phase purity of the CeO2-
TiO2nc NC. The mapping shows equitable distribution of the Ti, Ce and O in the CeO2-TiO2nc results confirm 
that formation of CeO2-TiO2nc. 
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Fig. 2: 
Elemental analysis of the CeO2-TiO2nc. 

 
Optical absorption properties 
Figure 3 shows the UV-Vis spectra of the as-prepared hybrid NC material. Two small peaks were obtained 
at 275 and 300 nm corresponding to TiO2 and CeO2, respectively. The optical band gap (Eg) was determined 
from the absorption profiles of CeO2/TiO2nc by using the Tauc plot given by 

ଶ(ℎʋߙ) = ℎʋ)ܣ −  (௚ܧ
where α is the absorption coefficient, h is Planck’s constant, n is the frequency of incident light, A is the 
proportionality constant, and Eg is the optical band gap. A band gap of 3.3 eV was noted, which can allow 
for effective charge carrier separation and less electron–hole recombination (45) (46).  

 
Fig. 3: UV absorption of CeO2/TiO2nc. The inset shows Tauc’s plot 

Raman shift 
Figure 4 shows the Raman spectra of the CeO2-TiO2 NC. A prominent Raman shift is detected at 461 cm-1 
corresponds to the F2g vibrational mode of the CeO2.  The major peak corresponding to CeO2 have been 
obtained at 461 cm-1 which is due to the F2g mode (47,48). The peak corresponding to the TiO2 has been 
obtained at three places 400, 517, and 639 cm-1 corresponding to the B1g, A1g+B1g and Eg modes of the 
anatase TiO2. The Raman study confirms the formation of pure CeO2 and TiO2 NPs in CeO2-TiO2 NC (49) 
(50). 
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Fig. 1: Raman spectra of the CeO2-TiO2nc 

Photocatalytic degradation of antibiotics: LEVO and CIP 
Photodegradation of selected LEVO and CIP was done individually using catalyst CeO2/TiO2nc. It has been 
observed that the in dark and under visible light conditions, both LEVO and CIP showed no noticeable 
change in the UV-Vis absorption value. It could be due to the larger wavelength and less energy of visible 
light that does not cause electron excitation to promote higher photo-degradation at the surface of the 
nanomaterials (3,5,22). While under UV light, LEVO and CIP concentrations decreased drastically as shown 
in Fig. 4 and Fig. 5 (10,17).  However, under UV light, more than 97.89% degradation was achieved for LEVO 
and over 91.78% for CIP in 120 minutes. This finding shows that the short wavelength and high energy of 
UV light facilitate CeO2/TiO2nc in the photocatalytic degradation process. The degradation percentages of 
LEVO and CIP were calculated using the formulae. 

݊ =
௜ܥ) − (௙ܥ

௜ܥ
× 10 

Where, ܿ௜  is the initial concentration of the antibiotics and ௙ܿ is the final concentration of the antibiotics. In 
both studies, UV-Vis spectroscopy was used to determine the initial and final concentrations of the 
antibiotics, and the peak was noted at 275 nm. The kinetics of the photocatalytic degradation of LEVO and 
CIP and CeO2/TiO2nc can be expressed as follows: 

−൬
ܥ݀
ݐ݀
൰ =  ܥܭ

Where, K is the pseudo-first-order reaction rate constant, C is the concentration of antibiotics molecules at 
time t, and t is the reaction time. By integrating the above equation and taking the limits as ܿ = ܿ௢  at time 
t = 0, obtained here 

݈݊ ݈݊ ൬
௢ܥ
ܥ
൰ =  ݐܭ

By using the above equation, the pseudo-first-order rate constant for both the studies have been tabulated 
in Table 2. Rate constant (k) for LEVO and CIP was obtained as 0.017 and 0.54, respectively.   

Table 2. Values of R square and K for LEVO and CIP antibiotics degradation under UV light 
S. No. Compound R2 k value (s-1) Degradation % 

1. Levofloxacin 0.89 0.017 97.89 
2. Ciprofloxacin 0.88 0.54 91.78 
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Fig. 4: The photocatalytic activity of CeO2/TiO2nc in (a) dark, (b) visible light, and (c) UV light; (d) C/C0 plot 
of plot(c) and inset shows the pseudo-first-order reaction kinetic study for LEVO. 
 

 
Fig. 5: The photocatalytic activity of CeO2/TiO2nc in (a) dark, (b) visible light, and (c) UV light; (d) C/C0 plot 
of plot and inset shows the pseudo-first-order reaction kinetic study for CIP. 
Cyclic Photocatalytic Study 
The cyclic photo-degradation study enables determining the reutilization capacity of CeO2/TiO2nc for 
multiple reuses. As shown in Fig. 6, CeO2/TiO2NC was reused for three cycles of the photocatalytic study. 
The overall degradation percentage was >85% for LEVO and CIP after three cycles of photocatalytic study.  
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Fig. 6: Cyclic photocatalytic study of CeO2/TiO2NC for degrading LEVO and CIP. 

Mechanism of the photo-catalytic degradation of CIP and LEVO 
Figure 7 shows the mechanism of photocatalysis. Commonly, in semiconductors, electrons are excited from 
the valence band (VB) to the conduction band (CB) in the presence of light, which leads to a redox reaction 
(51). In the present case, there are different band positions because of the CB and VB of CeO2 and TiO2. 
Based on the band gap, both CeO2 and TiO2 are considered semiconductors. Under irradiation with UV light, 
both these semiconductors are excited, which leads to the production of photo-generated electrons and 
holes. These photo-generated electrons are excited and reach the CB, while the photo-generated holes 
remain at the VB. The difference in electronegativity between CeO2 and TiO2 leads to a transfer of electrons 
from the conducting materials to the surface of LEVO and CIP. On the surface of LEVO and CIP, redox 
reactions occur, which leads to the degradation of LEVO and CIP due to the generation of OH˙ radicals 
(51,52). The electrons from the CB of the nanocomposites are responsible for the reduction process, which 
leads to the generation of O2-, and OH° radicals, whereas the VB leads to the oxidation process and 
generation of OH° and OH- radicals, which further recombine with the functional groups of antibiotics to 
break them into smaller harmless compounds. The mineralization process was the dominant process for 
the degradation of LEVO and CIP antibiotics(44,45,53). 

 
Fig. 7: Mechanism for the degradation of antibiotics using CeO2-TiO2nc. 

 
CONCLUSION 
CeO2-TiO2nc was synthesized by the co-precipitation method. The XRD study confirmed the formation of a 
cubic structure for CeO2-TiO2nc, with an average crystallite size of 19 nm. UV-vis spectroscopy showed two 
distinct peaks corresponding to CeO2 and TiO2, with a band gap of 3.3 eV. The photocatalytic study was 
performed under three irradiation conditions: in the dark, under visible light, and under UV light. The 
maximum degradation percentage for LEVO and CIP antibiotics were obtained as 97.3% and 99.8%, 
respectively in 120 min under UV irradiation. The degradation reaction rate constant was found as 0.017 
and 0.54 for LEVO and CIP, respectively.  
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