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ABSTRACT 
The carbon-to-nitrogen (C:N) ratio is a key stoichiometric indicator controlling nutrient cycling, microbial 
metabolism and eutrophication risk in freshwater ecosystems. This study evaluates C:N ratio dynamics in two closed 
tropical lakes near Udaipur, Rajasthan: Lake Badi (control, unburnt catchment) and Lake Baghdara (fire-affected 
catchment burned in March 2017. Dissolved organic carbon (DOC) and nitrate were measured pre- and post-
monsoon in both lakes, and C:N ratios were calculated as DOC/nitrate. Pre-monsoon C:N ratio was almost double in 
Baghdara (0.658) compared to Badi (0.335), indicating higher carbon availability in the fire-affected system. Post-
monsoon, Badi showed a moderate increase in C:N (0.412), while Baghdara showed a decline (0.508) despite strong 
absolute increases in both DOC and nitrate, reflecting proportionally greater nitrogen mobilization after fire. Fire-
affected Baghdara also showed much higher conductivity, hardness, TDS, phosphate, BOD and reduced dissolved 
oxygen, indicating advanced eutrophication and oxygen stress. The results highlight the usefulness of C:N ratio as an 
integrative indicator of wildfire impacts on lake water quality in semi-arid, closed-basin systems.  
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INTRODUCTION 
Wildfires are increasingly frequent and severe at global and regional scales due to climate change and 
changing land use, with cascading impacts on soil, surface water and ecosystem services [1,2,40]. In 
forested catchments, fire reduces canopy cover, alters hydrology, and enhances erosion and runoff, 
thereby increasing the export of sediments, ash, dissolved organic matter and nutrients to downstream 
waters [29,32,50]. Closed inland lakes in semi-arid regions are particularly vulnerable because they lack 
through-flow, have long water residence times and respond rapidly to changes in catchment inputs and 
evaporation [3,37,55]. 
The carbon-to-nitrogen (C:N) ratio is a fundamental stoichiometric indicator that governs microbial 
metabolism, decomposition efficiency, oxygen consumption and nutrient limitation of primary producers 
in aquatic ecosystems [3,43,59]. Studies on lakes and streams show that DOC:NO₃⁻ (dissolved organic 
carbon to nitrate) ratios strongly influence nitrate uptake and the coupling between carbon and nitrogen 
cycles, with low DOC:NO₃⁻ ratios indicating carbon limitation and potential accumulation of inorganic 
nitrogen [44,45]. 
Wildfire can modify both the quantity and quality of dissolved organic carbon and inorganic nitrogen 
exported from catchments [31,41,44]. Experimental and observational work indicates that fire often 
elevates nitrate concentrations and can either increase or decrease DOC, depending on burn severity, 
vegetation type and post-fire precipitation patterns [14,29,50]. In some systems, wildfire causes a multi-
year pulse of inorganic nitrogen and a reduction in DOC export, lowering DOC:DIN ratios and decreasing 
nitrate uptake efficiency in receiving waters [40,44,45]. At the same time, reviews show that many 
burned basins exhibit marked increases in DOC and nutrient concentrations during post-fire storm 
events, with consequences for drinking water treatment and eutrophication risk [10,19,30].   
In southern Rajasthan, India, Lake Badi (control) and Lake Baghdara (fire-affected) are two closed, rain-
fed freshwater lakes with forested catchments, comparable climate and low direct anthropogenic 
disturbance [36,37,55,56]. Lake Baghdara’s catchment experienced a severe wildfire in March 2017, 
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while Lake Badi has had no recent fire history, offering a paired-lake setting to isolate wildfire effects on 
lake water chemistry [23,55]. Previous work on these lakes has documented long-term changes in 
salinity, nutrient status and trophic state linked to catchment characteristics and anthropogenic inputs 
[37,55]. 
The present study focuses specifically on how catchment wildfire alters DOC, nitrate and their C:N ratio in 
these closed tropical lakes, in the context of broader water quality responses. The objectives are to: 

 quantify DOC, nitrate and DOC:NO3⁻-based C:N ratios in both lakes during pre- and post-monsoon 
periods; 

 compare seasonal C:N shifts between fire-affected and control catchments; 
 relate C:N changes to other water quality parameters such as conductivity, hardness, phosphate, 

DO and BOD; and 
 interpret the implications for eutrophication and water resource management in fire-prone, 

semi-arid, closed-basin lakes.  
 
MATERIAL AND METHODS 
Study area 
The study was conducted on two isolated rain-fed lakes near Udaipur city, Rajasthan, India, which has a 
sub-humid climate with strong seasonality and below-average Indian rainfall. 
 Lake Badi (control lake): Closed freshwater body ~10 km from Udaipur (24.61605°N, 73.622127°E), 

surface area ~1.25 km², maximum depth ~15 m, forested catchment without recorded fires in recent 
years, minimal direct anthropogenic disturbance. 

 Lake Baghdara (fire-affected lake): Closed freshwater body ~20 km SE of Udaipur (24°31′N, 
73°48′E), surface area ~1.8 km², maximum depth ~8.5 m, dry tropical deciduous forest catchment, 
affected by a severe wildfire on 13 March 2017 that burned several hectares . 

Both lakes are closed basins with no perennial inlets or outlets and are fed directly and indirectly by 
monsoon rainfall, making them highly sensitive to catchment inputs and evaporation. 
Sampling and analytical methods 
Water samples were collected in triplicate during: 

 Pre-monsoon (summer, shortly after the 2017 fire in Baghdara), and 
 Post-monsoon (after the 2017 rainy season) from both lakes. 

Samples were taken from subsurface water using pre-sterilized BOD bottles between 8:00–10:00 AM, and 
in-situ measurements of temperature and pH were recorded. Laboratory analysis followed [4]. 
Parameters measured included temperature, pH, turbidity, electrical conductivity (EC), total hardness, 
total dissolved solids (TDS), alkalinity, nitrate, phosphate, dissolved oxygen (DO), biochemical oxygen 
demand (BOD) and dissolved organic carbon (DOC). 
C:N ratio calculation 
For this study, the operational C:N ratio was calculated as: 
C:N ratio=DOC (mg L−1)/Nitrate	(mg	L−1) 
using DOC as the dissolved carbon pool and nitrate-nitrogen as the dominant inorganic nitrogen species 
in lake water. 
Statistical analysis 
Paired t-tests (p < 0.05) were applied to test for significant differences between: 

 pre- and post-monsoon values within each lake; and 
 post-monsoon values between the two lakes (Badi vs Baghdara). 

Significance for each water quality parameter is reported in the Results section, following standard 
approaches in post-fire water quality studies. 
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RESULTS 

 
Figure 1. Comparison of C:N Ratios (DOC/Nitrate) in Lake Badi and Lake Baghdara 

 

     
Figure 2: DOC and Nitrate Concentration Trends Across Seasons and Lakes 
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Figure 3: BOD Levels and C:N Ratios: Relationship Between Organic Load and Carbon-Nitrogen Balance 

 
 
 

 
Figure 4: Post-Monsoon Water Quality Parameter Comparison: Heatmap of Badi vs Baghdara 

 
Figure 5: Seasonal Variation in Key Water Quality Parameters: Badi vs Baghdara 
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Lake Baghdara showed substantially higher DOC and nitrate than Lake Badi in both seasons, with pre-
monsoon C:N nearly double that of the control lake. Post-monsoon, the C:N ratio increased in Badi, 
whereas it decreased in Baghdara despite the marked rises in DOC and nitrate in Baghdara. 
Seasonal DOC and nitrate dynamics 
In Lake Badi, DOC decreased from 0.87 to 0.70 mg/L (−19.5%), and nitrate decreased from 2.60 to 1.70 
mg/L (−34.6%) from pre- to post-monsoon. In Lake Baghdara, DOC rose from 2.85 to 4.57 mg/L 
(+60.4%), while nitrate more than doubled from 4.33 to 9.00 mg/L (+107.8%). These differences indicate 
normal seasonal dilution in the control lake and strong post-fire mobilization of both carbon and nitrogen 
in the fire-affected lake. 
Statistical significance 
Paired t-tests between pre- and post-monsoon within each lake showed significant seasonal changes in 
Badi for temperature, conductivity, nitrate, BOD and DOC, and in Baghdara for temperature, conductivity, 
hardness, TDS, alkalinity, nitrate, phosphate and BOD (p < 0.05). Paired comparisons between lakes for 
post-monsoon values indicated significant differences for all parameters except turbidity and alkalinity, 
demonstrating a strong wildfire signal on Baghdara water quality [29,40].  
 
DISCUSSION 
Fire-induced shifts in C:N ratio 
The higher pre-monsoon C:N ratio in the fire-affected Lake Baghdara compared to the control Lake Badi 
indicates an immediate legacy of wildfire in the catchment, with proportionally greater export of carbon 
relative to nitrate shortly after the burn. This is consistent with evidence that combustion can volatilize 
part of the nitrogen pool while leaving behind charred, carbon-rich residues and ash with altered 
stoichiometry [48,57]. Fire can also produce more aromatic and nitrogen-rich DOC, but the net DOC 
response depends on burn severity, vegetation and subsequent hydrology [14]. 
Post-monsoon, both DOC and nitrate increased in Lake Baghdara, but nitrate rose proportionally more 
than DOC, leading to a decline in the DOC:NO₃⁻-based C:N ratio despite higher absolute concentrations of 
both elements. This pattern suggests strong post-fire mobilization and nitrification of soil nitrogen, 
combined with limited plant uptake and microbial immobilization due to carbon limitation [41]. Similar 
disproportionate increases in inorganic nitrogen, especially nitrate, have been reported in streams and 
lakes following wildfires in boreal, temperate and semi-arid regions, often persisting from several years 
up to a decade [28,45].  
In contrast, the control Lake Badi showed modest decreases in both DOC and nitrate after the monsoon, 
with a slight increase in C:N ratio, reflecting dilution and normal seasonal flushing without additional fire-
derived nutrient inputs. This divergence between the two lakes supports the interpretation that wildfire, 
rather than climate or regional deposition alone, is responsible for the altered stoichiometry and stronger 
post-monsoon nutrient pulses in Lake Baghdara [40,50].  
The low C:N ratios (0.3–0.7) observed in both lakes are substantially below typical microbial biomass or 
seston C:N ratios, which are closer to or higher than the Redfield N proportion, indicating that dissolved 
inorganic nitrogen is relatively abundant compared to labile DOC [3,59]. Under such conditions, 
heterotrophic bacteria are likely carbon-limited, while nitrate remains available for export and for 
supporting primary production where phosphorus is sufficient [44,45]. The much higher BOD and lower 
DO in the fire-affected lake post-monsoon suggest that the DOC present is reactive enough to fuel intense 
microbial respiration, even if overall C:N is low. Elevated DOC and BOD following wildfire have been 
reported in other systems, with consequences for oxygen depletion, habitat degradation and treatment 
challenges for downstream water supplies [10,19]. 
The coupling between stoichiometry and oxygen dynamics is particularly critical in closed lakes, where 
long residence times, strong stratification and lack of flushing can favor hypoxia and internal nutrient 
loading [3,37]. In Lake Baghdara, the combination of high DOC, very high nitrate and phosphate, elevated 
BOD and depressed DO suggests an advanced eutrophication trajectory, with potential for periodic or 
persistent anoxia in deeper layers and further release of phosphorus from sediments via internal loading 
[61].  
Eutrophication risk and trophic state shift 
Long-term observations show that Lake Baghdara has shifted from oligotrophic toward mesotrophic 
conditions over the last two decades due to catchment runoff and indirect human activities, and the 
present results indicate that wildfire has accelerated this trend [36,37,55,56]. Post-monsoon phosphate 
and nitrate concentrations in the fire-affected lake far exceeded those in the control lake, with values 
comparable to those associated with severe eutrophication and harmful algal blooms in other freshwater 
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systems [61]. Combined with elevated conductivity and TDS, this nutrient enrichment points to enhanced 
external and potentially internal loading, amplified by fire-induced erosion and ash deposition [24,29,44].  
Wildfire-driven changes in water quality similar to those observed here—higher DOC, nitrogen, 
phosphorus, suspended solids and reduced clarity—have been documented in a variety of lake types, 
with effects sometimes lasting several years [10,57]. Multi-year analyses from North America and Europe 
indicate that post-fire water quality degradation can persist beyond the initial recovery of vegetation, and 
that the magnitude of change is related to burn severity, hydrologic connectivity and lake type [57]. The 
closed-basin nature of Baghdara, together with semi-arid climate and high evaporation, likely enhances 
the accumulation and persistence of these fire-derived solutes compared with more open, well-flushed 
systems [3,36]. 
C:N ratio as an integrative indicator and management tool 
This study shows that a simple DOC:NO₃⁻-based C:N ratio, derived from routine monitoring parameters, 
is a useful integrative indicator of wildfire impacts on lake biogeochemistry. Changes in C:N captured both 
the immediate post-fire enrichment in carbon relative to nitrogen and the subsequent dominance of 
nitrate mobilization during the monsoon period. Coupling C:N ratio data with measurements of DOC, 
nitrate, phosphate, DO and BOD provides a mechanistic understanding of how fire alters the balance 
between carbon supply, nitrogen availability, microbial respiration and eutrophication risk [44,45].  
From a management perspective, monitoring DOC, nitrate, C:N ratio and key supporting parameters in 
fire-prone watersheds can help identify windows of elevated vulnerability for drinking water treatment 
and aquatic ecosystem health [10,1940]. The strong post-monsoon responses observed here suggest that 
sampling should be intensified during and after storm events in the first years following wildfire, when 
the largest pulses of DOC and nutrients are likely to occur [29,30,57]. In closed or poorly flushed lakes, 
this information can support decisions regarding catchment rehabilitation, erosion control, early warning 
for algal blooms and adjustments in treatment processes to address higher organic loads and disinfection 
by-product formation potential [10,46].   
 
CONCLUSION 
Wildfire in the catchment of a closed tropical lake substantially altered DOC, nitrate and their C:N ratio, 
alongside wide-ranging changes in ionic content, nutrients and oxygen regime [31,50]. The fire-affected 
lake exhibited higher baseline C:N ratio pre-monsoon, strong post-monsoon increases in both DOC and 
nitrate but a declining C:N ratio due to disproportionate nitrate mobilization, and severe eutrophication 
indicators such as high phosphate, high BOD and low DO. 
The DOC:NO₃⁻ C:N ratio, calculated from standard monitoring parameters, proved to be a useful 
integrative indicator of post-fire biogeochemical alteration in closed-basin lakes [3,44]. For water 
managers in fire-prone regions, concurrent monitoring of DOC, nitrate, C:N ratio, DO, BOD and key ions is 
recommended to assess post-fire risks to drinking water quality and lake ecosystem health [10,40]. In 
semi-arid systems with limited flushing, such as the studied lakes in southern Rajasthan, wildfire should 
be recognized as a major driver of long-term trophic state change and integrated explicitly into catchment 
and water resource management plans [37,40]. 
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